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The density of Yang-Lee zeros in the thermodynamic limit is discussed for 
ferromagnetic spherical models of general dimensionalities and arbitrary 
range of interaction. In all cases the zeros lie on the imaginary axis in the 
complex magnetic field plane H = H "  + i l l "  with a density fC(H") that 
exhibits a square root singularity fC(H") ~ (H" - Ho) ", with ~r = �89 as the 
edge of the gap at H" = H o ( T )  is approached for T > T~. When T--> T~ 
one has H o ( T )  ~ ( T  - To) A with critical exponent A = /3 + 7. 

KEY WORDS: Yang-Lee zeros; spherical models; complex magnetic 
field ; ferromagnets ; critical point singularities ; critical exponents. 

1. INTRODUCTION 

In 1952 Yang and Lee (1~ drew attention to the significance o f  the zeros o f  the 
parti t ion function in the complex plane o f  an appropriate  field (or activity) 
variable and showed how the behavior o f  the zeros in the thermodynamic  
limit was intimately related to the occurrence o f  phase transitions. (2~ The 
concept  of  the distribution o f  zeros has proved very useful in establishing the 
a b s e n c e  of  phase transitions in a range o f  models. However,  application to 
the study of  the nature o f  phase transitions and the behavior o f  thermo- 
dynamic quantities has been limited by the difficulty o f  obtaining concrete 
information about  the distribution o f  zeros. In particular, it is important  to 
understand the nature o f  any singularities in the density o f  the zeros, 
especially those lying closest to the real field (or activity) axis, since these 
singularities will dominate observable behavior. 

In this paper  we address this problem for spherical models o f  arbitrary 
dimensionality d and with general interactions. We will consider only the 
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asymptotic distribution of the zeros which is attained in the thermodynamic 
limit of an infinitely large system. For this purpose the electrostatic analogy 
originally introduced by Lee and Yang, ~2) and since utilized by others, (3-5) is 
most appropriate. In this approach an isolated zero in the complex plane is 
regarded as a real, positive charge; lines of charge induce discontinuities in 
the electric field, which, in turn, corresponds to a first derivative of the 
thermodynamic free energy. Thus, the locus of zeros can be found by ana- 
lytically continuing the equation of state from the real axis into the complex 
plane and discovering those special branch cuts across which the first 
derivative of the free energy parallel to the cut is continuous. These cuts may 
then be identified with the locus of zeros and, furthermore, the discontinuity 
in the normal derivative across the cut will be proportional to the limiting 
density of zeros. In the case of a magnetic model, where the zeros in the 
complex magnetic field plane (H', H " ) =  (Re{H}, Im{H}) are usually of 
principal interest, the appropriate first derivative is simply the magnetization 
M and loci of zeros represent cuts that make the analytic function M(H) 
single-valued. 

This method is open to the technical objection that it may be misleading, 
since certain distributions of zeros that are everywhere analytic may be missed. 
In many cases this objection has no force, because the zeros are known to be 
restricted to certain loci and such problems cannot arise. Thus the original 
Lee-Yang circle theorem for spin-{ Ising ferromagnets shows that the zeros 
are confined to the pure imaginary magnetic field axis; unfortunately, the 
analogous theorem is not available for spherical models. However, rather 
than enter into these questions here, we will take the attitude that the nature 
of the singularities in the complex plane of the analytically continued free 
energy is, in any case, the topic of prime interest. 

For the wide range of spherical models studied, we find that the zero 
distribution is concentrated on the imaginary magnetic field axis H ' =  
Re{H} = 0 above (or below) a "gap"  with "edges" at Ira{H} = H " =  
+ Ho(T). The size of this gap vanishes as the temperature T approaches the 
critical point. Its detailed variation depends on the dimensionality of space 
and on the form of the interactions; however, in the critical region it exhibits 
the universal scaling law behavior 

Ho(T) ~ ( T -  To) ~ O) 

where A =/3 + 7 is the thermodynamic gap exponent C6) for the appropriate 
class of spherical models. Explicit expressions for the value of A are given 
below: note that A depends on the dimensionality d and on the exponent ,X of 
the decay law of the interactions, if these are of long range, with J(R) ~. 
1/R a +~ (as R--~ oo); but A is independent of other details of the lattice 
structure and interactions. 
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On the edges of the gap we find that the density f~(H") of the zeros ex- 
hibits a singularity of universal type. Explicitly, if we define ff(H") so that the 
number of zeros on the imaginary axis between i l l"  and i ( H " +  dH") 
approaches Nfg(H") dH" as N, the number of spins in the system, approaches 
infinity, we obtain 

fY(H") ,~ G[H" - Ho(T)] ~ for H" --+ Ho(T)+ (2) 

where o = �89 and G is a constant. This square root singularity is independent 
of the dimensionality of space and all details of the lattice structure, and of 
the nature of the interactions, whether of long or short range. We may remark 
that the singularity is of the same type as that found for mean field models (v 
but differs strikingly from what is essentially the only other exactly known 
result, namely e = - �89  for the standard one-dimensional Ising model (2.v (but 
see also Ref. 5). 

2. GENERAL S P H E R I C A L  M O D E L S  

We consider spherical models on a regular lattice in d-dimensional space 
with lattice spacing a and cell volume v0. At the lattice sites {R} are located 
continuous, classical scalar spins {s(R)} which interact via the Hamiltonian 

= 1 ~ J(R - R')s(R)s(R') - / ~ H ~  s(R) + g ~  [s(R)] 2 (3) 
R ~ R "  R 1{ 

Here J(R) =-- J ( -  R) represents the exchange coupling, while H is the applied 
magnetic field and/~ is the magnetic moment per unit spin length. The spins 
are restricted to unit mean length by the spherical condition 

5~2 = ( N - 1  ~ [s(R)]2~ = 1 (4) 

where N is the number of spins, while the angular brackets denote the stan- 
dard thermal expectation. The condition is to be met by adjusting the 
spherical field g. This formulation is essentially that of Lewis and Wannier, ~8) 
which is thermodynamically equivalent ~9) to the original formulation of 
Berlin and Kac31~ Since we are interested only in the thermodynamic limit, 
the differences that arise for finite N are of no consequence for us. 

The partition function at temperature T may be calculated exactly in 
the standard way ~I~) by introducing Fourier-transformed spin variables 
which diagonalize the quadratic form representing the Hamiltonian. The 
resulting Gaussian integrals are readily performed. The spherical condition 
(4) becomes the constraint equation 

~F (r, H; g) = I (5) eg 
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where F(T,  H;  g)  is the free energy per spin. By virtue of  the nature of this 
constraint, any thermodynamic function involving only first derivatives of F 
is the same whether taken at fixed g or at fixed S~L Specifically, we may 
differentiate F(T,  H; g)  to find the reduced magnetization m = M/t*, then 
eliminate g in favor of m in the constraint equation to obtain, finally, the 
equation of state in the form 

kBTIa(kBTh/m) = 1 - m 2 (6) 

where the reduced magnetic field is 

h = .~H/k~T = h' + ih" (7) 

while the basic integral is defined by 

Ia(~) = v0 f ,  [~ + ](0) - J (q)] - i  (8) 

J(q) = ~ [exp(iq.R)]J(R) (9) 
R 

where fq = (2~r)- a f daq, the integral running over the first Brillouin zone of 
the appropriate reciprocal lattice. 

Now note that the Fourier transform J(q) is real for real q since J(R) = 
J ( - R ) .  Furthermore, we will assume that 

](0) > ](q) for q # 0 (10) 

for all q in the first Brillouin zone. Physically, this restriction means that the 
only possible phase transition in low field is of ferromagnetic character. 
Mathematically the restriction is satisfied trivially if we assume that the 
interactions are of strictly ferromagnetic character, that is, 

J (R)  >/ 0 all R (11) 

However, (10) is actually more general than this. 
From (10) it follows that the basic integral Ia(~) is real and strictly 

monotonic decreasing for real, positive g. Furthermore, Ia(~) is an analytic 
function in the complex ~ plane except for a cut running along the negative 
real axis from a branch point at ~ = 0. The character of  this branch point 
depends on the behavior of the coupling J(R) for large IRI as will now be 
shown. If  the interactions are of  finite range, in the sense that ~R IRI2J(R) 
converges, the inequality (10) extends to 

](q) z J(0) - A ( q a )  2 + ... (12) 

for small qa (where a is the lattice spacing). In the case of  nearest neighbor 
coupling of  strength J on the d-dimensional hypercubic lattice one has 
j 2 = g .  



The Yang-Lee Edge Singularity in Spherical Models 209 

More generally, in the case of long-range interactions that, for [R I -+ 0% 
decay as 

J(R) ,~ a/IRI ~+~ with 0 < t < 2 (13) 

one has, for small qa, 

J(q) z J(0) -j~,(qa) x + ... (14) 

If  we formally set 1 = 2 in this relation, and all others below, we obtain (12) 
and thereby include a description of the short-range case. [Note, however, 
that the excluded borderline case I = 2 in (13) leads to logarithmic factors in 
the Fourier transform, which are not allowed for in our analysis.] 

If  the expressions (14) and (12) are substituted into the definition (8) for 
Ia(~), the integral may be evaluated asymptotically for small ~ in a straight- 
forward manner for general d (including nonintegral d). Specifically, for 
d < I one may put daq -- caqa- ldq  with ca = 2rra/2/P(�89 and extend the 
range of  integration to Iql = or; for d > h the same method suffices after 
differentiation once to obtain Ia'(~) = (dla/d~) or, for d > 2t,  twice, etc. In 
this way one finds 

Ia(~) ~ A e , ~  -1+(11~ for 0 < d < t 

z A~,~ ln(jz/~) for d = 1 

,~ Ia(O) - A a , ~  (al~)-I for h < d < 2A 

I2a(0) - A2A,a~ ln(jA/~) for d = 2 t  

/a(0) - I/a'(0)]~ for d > 2A (15) 

as ~--~ 0. The amplitudes Aa,a are all positive; otherwise their actual values 
will play no crucial role. Since they are universal, however, we record them 
here: 

Aa,x = (2~r)- ac~vo/a~Aj~,~l sin(&r/A) l 

= (2rr)-acavo/aahjaaa 

f o r 0  < d <  2 h b u t d v  a h 

f o r d =  l o r d = 2 h  
(16) 

Likewise, the integrals Ia(O) are positive, although their values depend on the 
detailed lattice structure, etc. 

3. B E H A V I O R  IN THE  CRIT ICAL REGION 

The behavior of the density of  zeros is of most interest for temperatures 
close to the critical point. In addition, the analysis happens to be easiest in 
this region. Accordingly, we examine it first. 
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The ferromagnetic critical point is conveniently defined by the simul- 
taneous vanishing of  the magnetization m and the inverse susceptibility. 
This yields 

kzTc = 1/la(0) (17) 

provided Ia(O) is finite, as it is for d > A; otherwise there is no phase transi- 
tion for T > 0 and one may take Tc -- 0. Near the critical point the inverse 
susceptibility is small and, hence, so is the ratio ~ = ksTh/m.  Consequently 
the asymptotic equation of  state may be found by substituting into (6) the 
expressions (15) for the integral Ia(~). 

Consider first the case d ~< A for which Tc = 0. The equation of state 
may then be written asymptotically as 

h ,,~ Ba,~m/(l - m2) ~/(a-a) for 0 < d < A 
(18) 

B~.~rn exp(rn2/A~.xkBT) for d = A 

where the amplitudes Ba.a are finite, real, and positive for T > 0. 
These formulas represent implicit equations for the analytic function 

m(h) (at fixed T). To understand their significance a graphical analysis is 
helpful. Guided by the Yang-Lee theorem (2) for the standard Ising model, 
we expect the zeros of  the partition function, and hence the cut needed for the 
function re(h), to lie along the imaginary h axis. Accordingly, let us set 

h = h' + ih" = iy and m = rn' + ira" = iw (19) 

and consider real w (i.e., pure imaginary magnetization). The equations of 
state (t8) then yield real y (i.e., pure imaginary field). Furthermore, the 
general character of  the (y, w) or (ih, im) relation is as illustrated in Fig. 1. 
Evidently y as a function of w exhibits a simple, analytic maximum at 
(h0, too) [and a corresponding conjugate minimum at ( - h o ,  -mo)] .  Con- 

- m o  

y E h  I' 

" f f lo W ~" m # 

- h  o 

Fig. 1. Variation of y =- h" = Im{h} with real w =- rn" = Im{m} for spherical models 
with d _< A, which impIies Tc = O. The maximum at y = ho, w = mo corresponds to a 
square root branch point in the function re(h), 
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versely, w as.a function of y, or m as a function of h, must exhibit conjugate 
square root branch points at y = + h0 or h = _+ iho. Note, furthermore, that 
the nature of  this branch point is quite independent of t h e "  critical character" 
of the spherical model as exemplified by the exponent ,~/(h - d); this, indeed, 
enters only into the dependence of y on w (or h on m) for large values of w. 
In the inverse function w(y)  [or m(h)] this dependence is effectively concealed 
on the second sheet of  the function. 

The heuristic arguments just presented confirm, for d ~< h, the con- 
clusion (2) stated in the introduction. The arguments can be made more 
rigorous by noting that some sufficiently high derivative of m(h) should 
diverge at any branch point. In fact, it suffices to solve the equation 
(dh/dm) = 0 to locate the branch point. As T ~ 0 this yields explicitly 

ho(T) "~ Ca,a(kBT) at(~'-a~ for 0 < d < h 
(2O) 

Ca,a(kBT) -lj2 e x p ( -  1/Aa,ak~T) for d = h 

where 

Ca,a = [ ( a -  d)/()t + d)]~12[Aa,a(d + h)/2h] a/(a-a) for O < d < h  

(21) 

for d = ~ (22) 

conclusion (2), this finally yields 

g(h") ,~ Ga.a(T)[[h" I - ho(T)] 1/2 for 

= 0 for 

where the amplitudes are given by 

[TrGa,a(T)] 2 = 2~(~ - d)/(h + d)2ho(T) 

= A~,a, kBT/2ho(T ) 

Ih"l --" h0 + 
(24) 

th"l ho 

for 0 < d < h  
(25) 

for d = l  

Ca,a = ja(Aa.a/2e) 112 

In addition, the calculation shows that there are no other branch points. 
Since y is real for real w, the branch cuts may be placed along the imaginary 
h axis as anticipated. Note that when T---~ 0 the branch points, which in fact 
locate the edges of the gap in the zero distribution, approach the real h axis 
as a power law for d < h but exponentially fast for d = h. 

Near the branch points we may clearly write 

h z iho + �89 - imo) 2 (23) 

where the second derivative is evaluated at m = imo and is found to be purely 
imaginary, as may be anticipated from Fig. 1. Inversion of this relation 
confirms the square root nature of the branch points and shows that the 
imaginary part of m will be continuous across the cuts only if they lie along 
the imaginary h axis. If Ng(h") dh" represents asymptotically the number of 
zeros on the imaginary h axis between ih" and i(h" + dh"), the discontinuity 
of the real part of  m across the cut is equal (2~ to 2rrg(h"). In accord with the 
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The analysis for the cases d > h, for which a phase transition occurs 
with Tc > 0, proceeds in a completely analogous way. It is convenient, as 
usual, (~) to set 

t = ( T -  TD/Tc (26) 

Then the asymptotic equation of state for d > h but d r 2 t  may be written 

h ~ Ba,am(t + mZ) ~ (27) 

where the susceptibility exponent for the spherical model is given by (~,11,12) 

y =  h i ( d -  h) for h < d~< 2h 
(28) 

= 1 for d/> 21 

For the borderline case d = 2h the equation of state is more complicated and 
involves logarithms. However, this does not alter any of the analysis in a 
significant way. From (27) one easily sees that the exponent for the spon- 
taneous magnetization is fi = 1. Furthermore, the equation of state may be 
cast in scaling form (e) in terms of the scaled variables m/V and h/t a with gap 
exp orient (6) 

A = fi + y = (d + ,~)t2(d - h) for t < d ~< 2h 
(29) 

= 1�89 for d/> 2h 

On making the transformation (19) to imaginary field and magnetization, 
one again finds that real w (or pure imaginary m) yields real y (i.e., pure 
imaginary h). The general appearance of  the (y, w) relation for T > Tc is now 
as shown in Fig. 2. Although the behavior of the plot for large w (or m") is 
different, the crucial analytic maximum at (ho, mo) remains and locates a 
square root branch point in the function m(h). The specifically critical nature 

' y -  h" 

t ~ 

4 • / I  mo \ w - m 

Fig. 2. Var ia t ion o f y  --- h" with real w = m" for spherical models  with d > 1, for  which 
Tc > 0. As in Fig. 1, the ext rema yield square roo t  b ranch  points  in re(h). 
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of  the equation of state, now exemplified by the exponent 7, determines the 
behavior of y only at large w and thus is confined to the second sheet of the 
function re(h). 

On calculating explicitly, the branch point is found to vary as t - +  0 + 
according to 

h0(r) ~ Cd,at ~ (30) 

for d > A but d # 2A, which confirms the conclusion (1) stated in the intro- 
duction. For  d = 2A one finds instead 

ho(T) ~ C2x,~ta/2/ln t -1 (31) 

but this behavior in fact corresponds precisely to the expected borderline 
critical behavior of quantities scaling like the magnetic field ~6'1t'12~ [and is 
still consistent with (1)]. The amplitudes appearing in these expressions are 
given explicitly by 

[ d -  a~ '2[  2~ t T(kBT~) -a''a-a' for ,~ < d ~< 2,~ 
c,.~ = \-d--4-V \A~,~(d + a) / 

(32) 

2 
= for d > 27t 

3a/3[Ia'(O)l(kBTc) 2 

Finally, on utilizing (23) as before, the density of zeros is again found to obey 
the square root law (24) but with amplitudes given by 

[,rGa,a(T)] 2 = 2,~(d - A)t/(d + ;92ho(T) for ;~ < d ~< 2,~ 
(33) 

= 2t/9ho(T) for d/> 2~ 

Note that these singularity amplitudes Ga,a diverge when T - +  Tc + since 
ho(T) ~ 0 more rapidly than t as the gap closes. Consequently, one should 
not expect a square-root singularity in the density of  zeros at T = T~. On the 
contrary, it is easy to see from the equation of  state (27) that the density of 
zeros is characterized by an exponent a = 1/8 at the critical point, where 
b = a//3 = 1 + (7/S3) is the standard exponent for the critical isotherm. (6) 

4. HIGH A N D  INTERMEDIATE TEMPERATURES 

We will demonstrate now that the square root singularity in the density 
of zeros on the imaginary field axis, which characterizes the asymptotic critical 
region, in fact remains for all temperatures. Furthermore, we will show that 
no density of zeros appears anywhere else in the complex field plane. 

It is instructive to consider first the high-temperature limit. This is 
described by large ~, for which, from (8), we find 

I~(~) ,~ Ko/~ with Ko = vof~0 (34) 
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where ~2o is the volume of  the first Brillouin zone. The equation of  state (6) 
then becomes a quadratic equation which is readily solved to yield 

re(h) = h/[�89 + �89 2 + 4h2) 1/2] (35) 

This exhibits only the expected pair of square root branch points at h = + iho 
where 

ho(T) = tzHo(T)/k~T = �89 (36) 

The density of the zeros can be read off from the discontinuity, which, for the 
amplitude Ga,~ in (24), yields 

[~rGa,a] 2 = 2/ho(T) (all d, ,~) (37) 

This square root branch point can be followed to lower temperatures by 
expanding Ia(0 systematically in inverse powers of  ~, which, in turn, yields an 
expansion of ho(T) in inverse powers of T. More generally, the fact that I~( 0 
is real for real ~ implies that at all temperatures above critical the graph of y 
for real w (or pure imaginary m) has essentially the same form as shown in 
Figs. 1 and 2. Specifically, the plot will exhibit at least one analytic maximum 
which will correspond to a square root branch point in m(h). If  there are a 
number of maxima at w = m0 < ml < m2 < ..., only the one nearest the 
origin, namely m0, will be relevant. In principle, two of these maxima could 
merge in special conditions to yield a vanishing second derivative (d2h/dm2)o 
in (23); in such a case the branch point would correspond to a fourth root, 

= 1; however, we will show that this does not happen. 
In more concrete terms, any branch points, real or complex, will be 

identified by (dh/dm) = O, and hence satisfy 

kBTh/m = ~o = u + iv (38) 

where u and v are real, and ~0 is a root of 

kBT~ola'(~o) = 2m 2 (39) 

If the equation of state (6) is used to eliminate the magnetization m, the 
equation for ~o(T) becomes 

~ola'(~o) + 2Ia(~o) = 2/kBT (40) 

We will now show (i) that there is a unique real, positive solution of this 
equation which determines a branch point of  m(h) on the imaginary axis with 
exponent ~ = �89 and cut running along the axis; (ii) that any complex roots of 
(40) have negative real part, i.e., u = Re{~0) < 0; but, conversely, (iii) that 
throughout the physical sheet of  the function m(h) the ratio ~o = k~Th/m has 
nonnegative real part. In sum, then, the limiting zero density under all 
conditions is confined to the imaginary h axis and terminates in a branch 
point of invariant character. 
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It is convenient to introduce the real integration variable 

x = J(O) - J(q) (41) 

in place of q, and the corresponding "density of states" fix) in terms of which 
the basic integral (8) can be written 

fo fofo Ia(~) = (~ + x ) - i  with =- dx v(x) (42) 

where X = supq{YO) - J(q)}. Note that, by (10), negative values o f x  do not 
enter. Then the real and imaginary parts of (40) become 

fo ur + ( u + 2 x ) ( u + x )  2 _  2 (43) 
[(u + x) ~ + v2p kBr 

fo u2 + v 2 + 4ux + 3x 2 
v [(u + x) 2 + v2] 2 = 0 (44) 

Clearly, v = 0 yields a solution of (44) and then (43) reduces to 

+ (u + x) - - - - ~  - k ~ r  

The left-hand side is a continuous, monotonic decreasing function of 
u = Re{~o} approaching zero as u -+ 0% and 2/kBTc as u --> 0 + .  Hence there 
is a unique real solution of (40) for T > To. Now, as already remarked, 
Ia'(~o) is real but negative for real, positive ~o. It thus follows from (39) that 
the real, positive solution ~0 determines a unique pair of complex conjugate 
branch points at which rn and, hence, h are both pure imaginary. 

Because Ia(~) is regular for g away from the negative real axis, we may 
expand about ~o and recapture (23) again with 

( d2h / dm2)o = - 4iho/ kBr~o[ Ia' ( ~o) ]2( d~o/ d@ ) (46) 

where, with | = 1/kBT, 

 [fo - ~ ]  = 3/a'(~0) + ~0I~(~o) = -Vo (~o + ~))a (47) 

Evidently (d2h/dm2)o is strictly positive for real ~o > 0. Finally, the density of 
zeros near the edge h = iho is once more determined by (24) but with ampli- 
tude given by 

-- kBr~~ ( ~~ (48) 
[~Ga';']~ = [3Ia'(~o) + ~ola(~o)]ho(T) 

Now let us return to (43) and (44) and consider the possibility of negative 
or complex roots ~o(T). First note that for v r 0 the integrand in (44) is 
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nonnegative whenever u >/ 0, so that the integral cannot vanish unless u < 0. 
it follows that any solutions of  (40) beyond the real, positive solution already 
discussed lie in the left half-plane. However, as we will now prove, such 
solutions are of  no concern! 

To this end, first note that the physical  sheet of the function rn(h) has rn 
real and positive for h real and positive. This follows most directly from the 
reality and convexity of  the free energy as a function of real h; however, it 
also follows from the equation of state (6). Second, notice that the equation 
of state is symmetric under change of  sign of both the real and imaginary 
parts of  h. Explicitly, if the physical sheet of  re(h) is known for h in the first 
quadrant of  the complex h plane, the relations 

re(h*) = [re(h)]* and m ( - h )  = - r e ( h )  (49) 

suffice to determine the whole physical sheet. Accordingly, let us write 

h = [hid ~ m = [role% ~ = Igle '~ (50) 

where 0 = cp + 4 is restricted by 0 ~< 0 ~< �89 The imaginary part  of  the 
equation of state (6) may then be written 

sin 4 IhEkBZ)2fo [(u + x y  + v=] -~ = ImP sin 2~0 (51) 

with u and v defined in analogy to (38). The coefficients of  both the sine 
functions are positive, so that sin 4 and sin 2~o = sin 2(0 - 4) must have the 
same algebraic sign. This condition restricts the allowed regions of  the (0, 4) 
plane to those shaded in Fig. 3. Now, as explained, the physical sheet of  
m(h) must include the real axis where 0 = cp = 4 = 0; indeed, for small 0 
one has, from (5t), 0 ~ c~b with c > 1. Thus region I in Fig. 3 is accessible on 

~,1 / "~n l . /  / i~ 
A / .r,, / I -.//" 

t I e" ,"  ~ "  : l I 

, -  - - - - - - ,  ~ z z - "  : , ( ~  , - ~  
----4 e / /  kilV-~'" i e e ~ i / 

/ ' l  A ' (  /T ,-, 4 "( A ,~  /-71" / - ~ ? r  / [ v ,, ~.71r / /1" 

Fig. 3. Allowed regions of the (0, if)= (arg{h}, arg{~}) plane following from the 
equation of state via (51). Region I is the only one accessible on the physical sheet of 
re(h). 
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the physical sheet. (Conceivable paths of  continuation from the real axis as 
0 increases monotonically are indicated.) However, region I communicates 
with other regions only at the point 0 = ~o = �89 r -- 0. Since this represents 
the limiting value of 0, no actual continuation to other regions is possible. 
Finally, notice that within region I the argument r of  ~ is bounded by �89 
Consequently, the real part  of  ~ is nonnegative everywhere on the physical 
sheet of  re(h). This completes the proof  that the limiting density of  zeros is 
confined to the imaginary h axis. 

5. D I S C U S S I O N  

As remarked in the introduction, the square root, ~ = �89 edge singularity 
in the density of zeros for spherical models is the same as found in mean field 
models. (7) Indeed, for d > 2• the asymptotic critical equation of state for 
spherical models is identical to that given by mean field theory. On the other 
hand, the one-dimensional, spin-�89 Ising model with nearest neighbor inter- 
actions yields (2~ ~ = - � 8 9  corresponding to the branch point behavior 
m -  imo ~ ( h -  iho) -112. Indeed, it can be seen by the transfer matrix 
method that this latter result is characteristic of  one-dimensional Ising models, 
including both those with further neighbor interactions and those consisting 
of two or more coupled chains (e.g., m x oo strips). (13) 

Numerical studies by Kor tman  and Griffiths, (7~ based on high- 
temperature series expansions, suggest the distinct edge singularity exponents 
a = -0 .125  + 0.05 for the two-dimensional square Ising lattice and cr = 
0.125 + 0.05 for the three-dimensional diamond Ising lattice. Values within 
these two ranges have recently been found for a number of  two- and three- 
dimensional Ising models in the limit T - +  oo. (14~ Thus, although ~ is inde- 
pendent of  d for spherical models, it appears to depend strongly on d for 
Ising models. However, a renormalization group analysis (1~) suggests that  
becomes equal to the mean field/spherical value �89 for Ising models in d/> 6 
dimensions. 

It  is known <~6~ that the spherical model corresponds to the n -+ ~ limit 
of  ferromagnetic models with n-component vectorial spin variables ~(R) = 
[s"(R)],=l,2 ..... . One might thus expect the edge singularity exponent ~ to 
depend on n as well as on d, approaching the spherical model value cr = �89 as 
n -+ oe. 2 This point is currently under investigation (I3) by the transfer kernel 
method for nearest neighbor one-dimensional models; a tentative analysis, 
however, indicates that ~ " s t i cks"  at the Ising (n = l) value, e = - 3 ,  for all 
n < oo and jumps abruptly to ~ = �89 only for n = oo. A similar result for 
general d is suggested by the renormalization group analysis. (~5) Further work 

2 It might be remarked that for the cases n = 2 and 3, Dunlop and Newman ~17~ have 
established that the zeros are confined to the pure imaginary magnetic field axis. 
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will, we hope, confirm these results and fill in further our  picture of the nature  
of  the Yang-Lee  zero distr ibution.  
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